本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数({(2x - 1)}^{4})({(5{x}^{2} - 1)}^{-3}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{16x^{4}}{(5x^{2} - 1)^{3}} - \frac{32x^{3}}{(5x^{2} - 1)^{3}} + \frac{24x^{2}}{(5x^{2} - 1)^{3}} - \frac{8x}{(5x^{2} - 1)^{3}} + \frac{1}{(5x^{2} - 1)^{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{16x^{4}}{(5x^{2} - 1)^{3}} - \frac{32x^{3}}{(5x^{2} - 1)^{3}} + \frac{24x^{2}}{(5x^{2} - 1)^{3}} - \frac{8x}{(5x^{2} - 1)^{3}} + \frac{1}{(5x^{2} - 1)^{3}}\right)}{dx}\\=&16(\frac{-3(5*2x + 0)}{(5x^{2} - 1)^{4}})x^{4} + \frac{16*4x^{3}}{(5x^{2} - 1)^{3}} - 32(\frac{-3(5*2x + 0)}{(5x^{2} - 1)^{4}})x^{3} - \frac{32*3x^{2}}{(5x^{2} - 1)^{3}} + 24(\frac{-3(5*2x + 0)}{(5x^{2} - 1)^{4}})x^{2} + \frac{24*2x}{(5x^{2} - 1)^{3}} - 8(\frac{-3(5*2x + 0)}{(5x^{2} - 1)^{4}})x - \frac{8}{(5x^{2} - 1)^{3}} + (\frac{-3(5*2x + 0)}{(5x^{2} - 1)^{4}})\\=&\frac{-480x^{5}}{(5x^{2} - 1)^{4}} + \frac{64x^{3}}{(5x^{2} - 1)^{3}} + \frac{960x^{4}}{(5x^{2} - 1)^{4}} - \frac{96x^{2}}{(5x^{2} - 1)^{3}} - \frac{720x^{3}}{(5x^{2} - 1)^{4}} + \frac{48x}{(5x^{2} - 1)^{3}} + \frac{240x^{2}}{(5x^{2} - 1)^{4}} - \frac{30x}{(5x^{2} - 1)^{4}} - \frac{8}{(5x^{2} - 1)^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!