本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{sin(x)}{(x - cos(x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(x)}{(x - cos(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(x)}{(x - cos(x))}\right)}{dx}\\=&(\frac{-(1 - -sin(x))}{(x - cos(x))^{2}})sin(x) + \frac{cos(x)}{(x - cos(x))}\\=&\frac{-sin^{2}(x)}{(x - cos(x))^{2}} - \frac{sin(x)}{(x - cos(x))^{2}} + \frac{cos(x)}{(x - cos(x))}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-sin^{2}(x)}{(x - cos(x))^{2}} - \frac{sin(x)}{(x - cos(x))^{2}} + \frac{cos(x)}{(x - cos(x))}\right)}{dx}\\=&-(\frac{-2(1 - -sin(x))}{(x - cos(x))^{3}})sin^{2}(x) - \frac{2sin(x)cos(x)}{(x - cos(x))^{2}} - (\frac{-2(1 - -sin(x))}{(x - cos(x))^{3}})sin(x) - \frac{cos(x)}{(x - cos(x))^{2}} + (\frac{-(1 - -sin(x))}{(x - cos(x))^{2}})cos(x) + \frac{-sin(x)}{(x - cos(x))}\\=& - \frac{3sin(x)cos(x)}{(x - cos(x))^{2}} + \frac{4sin^{2}(x)}{(x - cos(x))^{3}} + \frac{2sin^{3}(x)}{(x - cos(x))^{3}} + \frac{2sin(x)}{(x - cos(x))^{3}} - \frac{2cos(x)}{(x - cos(x))^{2}} - \frac{sin(x)}{(x - cos(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!