数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{({{lg(x)}^{ln(x)}}^{tan(x)})x}{7} - 1 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{7}x{{lg(x)}^{ln(x)}}^{tan(x)} - 1\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{7}x{{lg(x)}^{ln(x)}}^{tan(x)} - 1\right)}{dx}\\=&\frac{1}{7}{{lg(x)}^{ln(x)}}^{tan(x)} + \frac{1}{7}x({{lg(x)}^{ln(x)}}^{tan(x)}((sec^{2}(x)(1))ln({lg(x)}^{ln(x)}) + \frac{(tan(x))(({lg(x)}^{ln(x)}((\frac{1}{(x)})ln(lg(x)) + \frac{(ln(x))(\frac{1}{ln{10}(x)})}{(lg(x))})))}{({lg(x)}^{ln(x)})})) + 0\\=&\frac{{{lg(x)}^{ln(x)}}^{tan(x)}}{7} + \frac{x{{lg(x)}^{ln(x)}}^{tan(x)}ln({lg(x)}^{ln(x)})sec^{2}(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(lg(x))tan(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)tan(x)}{7ln{10}lg(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{{{lg(x)}^{ln(x)}}^{tan(x)}}{7} + \frac{x{{lg(x)}^{ln(x)}}^{tan(x)}ln({lg(x)}^{ln(x)})sec^{2}(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(lg(x))tan(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)tan(x)}{7ln{10}lg(x)}\right)}{dx}\\=&\frac{({{lg(x)}^{ln(x)}}^{tan(x)}((sec^{2}(x)(1))ln({lg(x)}^{ln(x)}) + \frac{(tan(x))(({lg(x)}^{ln(x)}((\frac{1}{(x)})ln(lg(x)) + \frac{(ln(x))(\frac{1}{ln{10}(x)})}{(lg(x))})))}{({lg(x)}^{ln(x)})}))}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln({lg(x)}^{ln(x)})sec^{2}(x)}{7} + \frac{x({{lg(x)}^{ln(x)}}^{tan(x)}((sec^{2}(x)(1))ln({lg(x)}^{ln(x)}) + \frac{(tan(x))(({lg(x)}^{ln(x)}((\frac{1}{(x)})ln(lg(x)) + \frac{(ln(x))(\frac{1}{ln{10}(x)})}{(lg(x))})))}{({lg(x)}^{ln(x)})}))ln({lg(x)}^{ln(x)})sec^{2}(x)}{7} + \frac{x{{lg(x)}^{ln(x)}}^{tan(x)}({lg(x)}^{ln(x)}((\frac{1}{(x)})ln(lg(x)) + \frac{(ln(x))(\frac{1}{ln{10}(x)})}{(lg(x))}))sec^{2}(x)}{7({lg(x)}^{ln(x)})} + \frac{x{{lg(x)}^{ln(x)}}^{tan(x)}ln({lg(x)}^{ln(x)})*2sec^{2}(x)tan(x)}{7} + \frac{({{lg(x)}^{ln(x)}}^{tan(x)}((sec^{2}(x)(1))ln({lg(x)}^{ln(x)}) + \frac{(tan(x))(({lg(x)}^{ln(x)}((\frac{1}{(x)})ln(lg(x)) + \frac{(ln(x))(\frac{1}{ln{10}(x)})}{(lg(x))})))}{({lg(x)}^{ln(x)})}))ln(lg(x))tan(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}tan(x)}{7(lg(x))ln{10}(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(lg(x))sec^{2}(x)(1)}{7} + \frac{({{lg(x)}^{ln(x)}}^{tan(x)}((sec^{2}(x)(1))ln({lg(x)}^{ln(x)}) + \frac{(tan(x))(({lg(x)}^{ln(x)}((\frac{1}{(x)})ln(lg(x)) + \frac{(ln(x))(\frac{1}{ln{10}(x)})}{(lg(x))})))}{({lg(x)}^{ln(x)})}))ln(x)tan(x)}{7ln{10}lg(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}tan(x)}{7(x)ln{10}lg(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)*-0tan(x)}{7ln^{2}{10}lg(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)*-tan(x)}{7ln{10}lg^{2}(x)ln{10}(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)sec^{2}(x)(1)}{7ln{10}lg(x)}\\=&\frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln({lg(x)}^{ln(x)})ln(lg(x))tan(x)sec^{2}(x)}{7} + \frac{2x{{lg(x)}^{ln(x)}}^{tan(x)}ln({lg(x)}^{ln(x)})tan(x)sec^{2}(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)ln(lg(x))tan^{2}(x)}{7xln{10}lg(x)} + \frac{2{{lg(x)}^{ln(x)}}^{tan(x)}ln({lg(x)}^{ln(x)})sec^{2}(x)}{7} + \frac{x{{lg(x)}^{ln(x)}}^{tan(x)}ln^{2}({lg(x)}^{ln(x)})sec^{4}(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(lg(x))ln({lg(x)}^{ln(x)})tan(x)sec^{2}(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)ln({lg(x)}^{ln(x)})tan(x)sec^{2}(x)}{7ln{10}lg(x)} + \frac{2{{lg(x)}^{ln(x)}}^{tan(x)}ln(lg(x))sec^{2}(x)}{7} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)sec^{2}(x)}{7ln{10}lg(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln^{2}(lg(x))tan^{2}(x)}{7x} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln({lg(x)}^{ln(x)})ln(x)tan(x)sec^{2}(x)}{7ln{10}lg(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(lg(x))ln(x)tan^{2}(x)}{7xln{10}lg(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln^{2}(x)tan^{2}(x)}{7xln^{2}{10}lg^{2}(x)} + \frac{2{{lg(x)}^{ln(x)}}^{tan(x)}tan(x)}{7xln{10}lg(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(lg(x))tan(x)}{7x} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)tan(x)}{7xln{10}lg(x)} - \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)tan(x)}{7xln^{2}{10}lg^{2}(x)} + \frac{{{lg(x)}^{ln(x)}}^{tan(x)}ln(x)sec^{2}(x)}{7ln{10}lg(x)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。