本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(1 + sqrt(x))}{(1 - sqrt(x))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})\right)}{dx}\\=&\frac{((\frac{-(\frac{-\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)}{(-sqrt(x) + 1)^{2}})sqrt(x) + \frac{\frac{1}{2}}{(-sqrt(x) + 1)(x)^{\frac{1}{2}}} + (\frac{-(\frac{-\frac{1}{2}}{(x)^{\frac{1}{2}}} + 0)}{(-sqrt(x) + 1)^{2}}))}{(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})}\\=&\frac{sqrt(x)}{2(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})(-sqrt(x) + 1)^{2}x^{\frac{1}{2}}} + \frac{1}{2(-sqrt(x) + 1)(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})x^{\frac{1}{2}}} + \frac{1}{2(\frac{sqrt(x)}{(-sqrt(x) + 1)} + \frac{1}{(-sqrt(x) + 1)})(-sqrt(x) + 1)^{2}x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!