本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{20}{cos(\frac{1}{2}pi - x)}){(45 + 36(cos(pi - x)))}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{20(36cos(pi - x) + 45)^{\frac{1}{2}}}{cos(\frac{1}{2}pi - x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{20(36cos(pi - x) + 45)^{\frac{1}{2}}}{cos(\frac{1}{2}pi - x)}\right)}{dx}\\=&\frac{20(\frac{\frac{1}{2}(36*-sin(pi - x)(0 - 1) + 0)}{(36cos(pi - x) + 45)^{\frac{1}{2}}})}{cos(\frac{1}{2}pi - x)} + \frac{20(36cos(pi - x) + 45)^{\frac{1}{2}}sin(\frac{1}{2}pi - x)(0 - 1)}{cos^{2}(\frac{1}{2}pi - x)}\\=&\frac{360sin(pi - x)}{(36cos(pi - x) + 45)^{\frac{1}{2}}cos(\frac{1}{2}pi - x)} - \frac{20(36cos(pi - x) + 45)^{\frac{1}{2}}sin(\frac{1}{2}pi - x)}{cos^{2}(\frac{1}{2}pi - x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!