本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{arcsin(x)}{(sqrt(1 - {x}^{2}))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{arcsin(x)}{sqrt(-x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{arcsin(x)}{sqrt(-x^{2} + 1)}\right)}{dx}\\=&\frac{(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{sqrt(-x^{2} + 1)} + \frac{arcsin(x)*-(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{1}{(-x^{2} + 1)^{\frac{1}{2}}sqrt(-x^{2} + 1)} + \frac{xarcsin(x)}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}sqrt(-x^{2} + 1)} + \frac{xarcsin(x)}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{sqrt(-x^{2} + 1)} + \frac{-(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)(-x^{2} + 1)^{\frac{1}{2}}} + (\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})xarcsin(x) + \frac{arcsin(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{x}{(-x^{2} + 1)^{\frac{3}{2}}sqrt(-x^{2} + 1)} + \frac{3x^{2}arcsin(x)}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{x}{(-x^{2} + 1)^{2}} + \frac{arcsin(x)}{(-x^{2} + 1)^{\frac{3}{2}}} + \frac{x}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!