数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 t 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数x + ln(tan(th(e^{t})a) + sec(th(e^{t})a)) 关于 t 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x + ln(tan(ath(e^{t})) + sec(ath(e^{t})))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x + ln(tan(ath(e^{t})) + sec(ath(e^{t})))\right)}{dt}\\=&0 + \frac{(sec^{2}(ath(e^{t}))(a(1 - th^{2}(e^{t}))e^{t}) + sec(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t})}{(tan(ath(e^{t})) + sec(ath(e^{t})))}\\=&\frac{-ae^{t}th^{2}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{ae^{t}sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{ae^{t}tan(ath(e^{t}))sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{ae^{t}tan(ath(e^{t}))th^{2}(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-ae^{t}th^{2}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{ae^{t}sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{ae^{t}tan(ath(e^{t}))sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{ae^{t}tan(ath(e^{t}))th^{2}(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))}\right)}{dt}\\=&-(\frac{-(sec^{2}(ath(e^{t}))(a(1 - th^{2}(e^{t}))e^{t}) + sec(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t})}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}})ae^{t}th^{2}(e^{t})sec^{2}(ath(e^{t})) - \frac{ae^{t}th^{2}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{ae^{t}*2th(e^{t})(1 - th^{2}(e^{t}))e^{t}sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{ae^{t}th^{2}(e^{t})*2sec^{2}(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t}}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + (\frac{-(sec^{2}(ath(e^{t}))(a(1 - th^{2}(e^{t}))e^{t}) + sec(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t})}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}})ae^{t}sec^{2}(ath(e^{t})) + \frac{ae^{t}sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{ae^{t}*2sec^{2}(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t}}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + (\frac{-(sec^{2}(ath(e^{t}))(a(1 - th^{2}(e^{t}))e^{t}) + sec(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t})}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}})ae^{t}tan(ath(e^{t}))sec(ath(e^{t})) + \frac{ae^{t}tan(ath(e^{t}))sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{ae^{t}sec^{2}(ath(e^{t}))(a(1 - th^{2}(e^{t}))e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{ae^{t}tan(ath(e^{t}))sec(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t}}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - (\frac{-(sec^{2}(ath(e^{t}))(a(1 - th^{2}(e^{t}))e^{t}) + sec(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t})}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}})ae^{t}tan(ath(e^{t}))th^{2}(e^{t})sec(ath(e^{t})) - \frac{ae^{t}tan(ath(e^{t}))th^{2}(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{ae^{t}sec^{2}(ath(e^{t}))(a(1 - th^{2}(e^{t}))e^{t})th^{2}(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{ae^{t}tan(ath(e^{t}))*2th(e^{t})(1 - th^{2}(e^{t}))e^{t}sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{ae^{t}tan(ath(e^{t}))th^{2}(e^{t})sec(ath(e^{t}))tan(ath(e^{t}))a(1 - th^{2}(e^{t}))e^{t}}{(tan(ath(e^{t})) + sec(ath(e^{t})))}\\=&\frac{-a^{2}e^{{t}*{2}}th^{4}(e^{t})sec^{4}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} + \frac{2a^{2}e^{{t}*{2}}th^{2}(e^{t})sec^{4}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} - \frac{2a^{2}e^{{t}*{2}}tan(ath(e^{t}))th^{4}(e^{t})sec^{3}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} + \frac{4a^{2}e^{{t}*{2}}tan(ath(e^{t}))th^{2}(e^{t})sec^{3}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} - \frac{ae^{t}th^{2}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{2ae^{{t}*{2}}th(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{2ae^{{t}*{2}}th^{3}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{4a^{2}e^{{t}*{2}}tan(ath(e^{t}))th^{2}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{2a^{2}e^{{t}*{2}}tan(ath(e^{t}))th^{4}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{a^{2}e^{{t}*{2}}sec^{4}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} - \frac{2a^{2}e^{{t}*{2}}tan(ath(e^{t}))sec^{3}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} + \frac{ae^{t}sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{2a^{2}e^{{t}*{2}}tan(ath(e^{t}))sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{2a^{2}e^{{t}*{2}}tan^{2}(ath(e^{t}))th^{2}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} - \frac{a^{2}e^{{t}*{2}}tan^{2}(ath(e^{t}))sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} + \frac{ae^{t}tan(ath(e^{t}))sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{2a^{2}e^{{t}*{2}}th^{2}(e^{t})sec^{3}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{a^{2}e^{{t}*{2}}sec^{3}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{a^{2}e^{{t}*{2}}tan^{2}(ath(e^{t}))sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{2a^{2}e^{{t}*{2}}tan^{2}(ath(e^{t}))th^{2}(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{a^{2}e^{{t}*{2}}tan^{2}(ath(e^{t}))th^{4}(e^{t})sec^{2}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))^{2}} - \frac{ae^{t}tan(ath(e^{t}))th^{2}(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{a^{2}e^{{t}*{2}}th^{4}(e^{t})sec^{3}(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} - \frac{2ae^{{t}*{2}}tan(ath(e^{t}))th(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{2ae^{{t}*{2}}tan(ath(e^{t}))th^{3}(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))} + \frac{a^{2}e^{{t}*{2}}tan^{2}(ath(e^{t}))th^{4}(e^{t})sec(ath(e^{t}))}{(tan(ath(e^{t})) + sec(ath(e^{t})))}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。