本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{2}^{({e}^{2}{\frac{1}{x}}^{2})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {2}^{(\frac{e^{2}}{x^{2}})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {2}^{(\frac{e^{2}}{x^{2}})}\right)}{dx}\\=&({2}^{(\frac{e^{2}}{x^{2}})}((\frac{-2e^{2}}{x^{3}} + \frac{2e*0}{x^{2}})ln(2) + \frac{(\frac{e^{2}}{x^{2}})(0)}{(2)}))\\=&\frac{-2 * {2}^{(\frac{e^{2}}{x^{2}})}e^{2}ln(2)}{x^{3}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2 * {2}^{(\frac{e^{2}}{x^{2}})}e^{2}ln(2)}{x^{3}}\right)}{dx}\\=&\frac{-2*-3 * {2}^{(\frac{e^{2}}{x^{2}})}e^{2}ln(2)}{x^{4}} - \frac{2({2}^{(\frac{e^{2}}{x^{2}})}((\frac{-2e^{2}}{x^{3}} + \frac{2e*0}{x^{2}})ln(2) + \frac{(\frac{e^{2}}{x^{2}})(0)}{(2)}))e^{2}ln(2)}{x^{3}} - \frac{2 * {2}^{(\frac{e^{2}}{x^{2}})}*2e*0ln(2)}{x^{3}} - \frac{2 * {2}^{(\frac{e^{2}}{x^{2}})}e^{2}*0}{x^{3}(2)}\\=&\frac{6 * {2}^{(\frac{e^{2}}{x^{2}})}e^{2}ln(2)}{x^{4}} + \frac{4 * {2}^{(\frac{e^{2}}{x^{2}})}e^{4}ln^{2}(2)}{x^{6}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!