本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数3cos({x}^{4}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 3cos(x^{4})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 3cos(x^{4})\right)}{dx}\\=&3*-sin(x^{4})*4x^{3}\\=&-12x^{3}sin(x^{4})\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -12x^{3}sin(x^{4})\right)}{dx}\\=&-12*3x^{2}sin(x^{4}) - 12x^{3}cos(x^{4})*4x^{3}\\=&-36x^{2}sin(x^{4}) - 48x^{6}cos(x^{4})\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -36x^{2}sin(x^{4}) - 48x^{6}cos(x^{4})\right)}{dx}\\=&-36*2xsin(x^{4}) - 36x^{2}cos(x^{4})*4x^{3} - 48*6x^{5}cos(x^{4}) - 48x^{6}*-sin(x^{4})*4x^{3}\\=&-72xsin(x^{4}) - 432x^{5}cos(x^{4}) + 192x^{9}sin(x^{4})\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -72xsin(x^{4}) - 432x^{5}cos(x^{4}) + 192x^{9}sin(x^{4})\right)}{dx}\\=&-72sin(x^{4}) - 72xcos(x^{4})*4x^{3} - 432*5x^{4}cos(x^{4}) - 432x^{5}*-sin(x^{4})*4x^{3} + 192*9x^{8}sin(x^{4}) + 192x^{9}cos(x^{4})*4x^{3}\\=&-72sin(x^{4}) - 2448x^{4}cos(x^{4}) + 3456x^{8}sin(x^{4}) + 768x^{12}cos(x^{4})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!