本次共计算 1 个题目:每一题对 y 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{(4ML - my + 2mL)}{(2ML + mL - my)}) 关于 y 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})\right)}{dy}\\=&\frac{(4(\frac{-(0 + 0 - m)}{(2ML + Lm - my)^{2}})ML + 0 - (\frac{-(0 + 0 - m)}{(2ML + Lm - my)^{2}})my - \frac{m}{(2ML + Lm - my)} + 2(\frac{-(0 + 0 - m)}{(2ML + Lm - my)^{2}})Lm + 0)*\frac{1}{2}}{(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}}\\=&\frac{2MLm}{(2ML + Lm - my)^{2}(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}} - \frac{m^{2}y}{2(2ML + Lm - my)^{2}(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}} - \frac{m}{2(2ML + Lm - my)(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}} + \frac{Lm^{2}}{(2ML + Lm - my)^{2}(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!