本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{a}sin(\frac{1}{x}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {x}^{a}sin(\frac{1}{x})\right)}{dx}\\=&({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)}))sin(\frac{1}{x}) + \frac{{x}^{a}cos(\frac{1}{x})*-1}{x^{2}}\\=&\frac{a{x}^{a}sin(\frac{1}{x})}{x} - \frac{{x}^{a}cos(\frac{1}{x})}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{a{x}^{a}sin(\frac{1}{x})}{x} - \frac{{x}^{a}cos(\frac{1}{x})}{x^{2}}\right)}{dx}\\=&\frac{a*-{x}^{a}sin(\frac{1}{x})}{x^{2}} + \frac{a({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)}))sin(\frac{1}{x})}{x} + \frac{a{x}^{a}cos(\frac{1}{x})*-1}{xx^{2}} - \frac{-2{x}^{a}cos(\frac{1}{x})}{x^{3}} - \frac{({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)}))cos(\frac{1}{x})}{x^{2}} - \frac{{x}^{a}*-sin(\frac{1}{x})*-1}{x^{2}x^{2}}\\=&\frac{-a{x}^{a}sin(\frac{1}{x})}{x^{2}} + \frac{a^{2}{x}^{a}sin(\frac{1}{x})}{x^{2}} - \frac{2a{x}^{a}cos(\frac{1}{x})}{x^{3}} + \frac{2{x}^{a}cos(\frac{1}{x})}{x^{3}} - \frac{{x}^{a}sin(\frac{1}{x})}{x^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!