本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数0.5kxx + 0.125k*2llsin(x)sin(x) - pl + plcos(x) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 0.5kx^{2} + 0.25kl^{2}sin(x)sin(x) + lpcos(x) - lp\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 0.5kx^{2} + 0.25kl^{2}sin(x)sin(x) + lpcos(x) - lp\right)}{dx}\\=&0.5k*2x + 0.25kl^{2}cos(x)sin(x) + 0.25kl^{2}sin(x)cos(x) - lpsin(x) + 0\\=&kx + 0.25kl^{2}sin(x)cos(x) + 0.25kl^{2}sin(x)cos(x) - lpsin(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( kx + 0.25kl^{2}sin(x)cos(x) + 0.25kl^{2}sin(x)cos(x) - lpsin(x)\right)}{dx}\\=&k + 0.25kl^{2}cos(x)cos(x) + 0.25kl^{2}sin(x)*-sin(x) + 0.25kl^{2}cos(x)cos(x) + 0.25kl^{2}sin(x)*-sin(x) - lpcos(x)\\=&0.25kl^{2}cos(x)cos(x) - 0.25kl^{2}sin(x)sin(x) + 0.25kl^{2}cos(x)cos(x) - 0.25kl^{2}sin(x)sin(x) + \frac{k}{1} - lpcos(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!