本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(tan(\frac{x}{2}) - 2)}{(tan(\frac{x}{2}) - 2)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{tan(\frac{1}{2}x)}{(tan(\frac{1}{2}x) - 2)} - \frac{2}{(tan(\frac{1}{2}x) - 2)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{tan(\frac{1}{2}x)}{(tan(\frac{1}{2}x) - 2)} - \frac{2}{(tan(\frac{1}{2}x) - 2)})\right)}{dx}\\=&\frac{((\frac{-(sec^{2}(\frac{1}{2}x)(\frac{1}{2}) + 0)}{(tan(\frac{1}{2}x) - 2)^{2}})tan(\frac{1}{2}x) + \frac{sec^{2}(\frac{1}{2}x)(\frac{1}{2})}{(tan(\frac{1}{2}x) - 2)} - 2(\frac{-(sec^{2}(\frac{1}{2}x)(\frac{1}{2}) + 0)}{(tan(\frac{1}{2}x) - 2)^{2}}))}{(\frac{tan(\frac{1}{2}x)}{(tan(\frac{1}{2}x) - 2)} - \frac{2}{(tan(\frac{1}{2}x) - 2)})}\\=&\frac{-tan(\frac{1}{2}x)sec^{2}(\frac{1}{2}x)}{2(\frac{tan(\frac{1}{2}x)}{(tan(\frac{1}{2}x) - 2)} - \frac{2}{(tan(\frac{1}{2}x) - 2)})(tan(\frac{1}{2}x) - 2)^{2}} + \frac{sec^{2}(\frac{1}{2}x)}{2(tan(\frac{1}{2}x) - 2)(\frac{tan(\frac{1}{2}x)}{(tan(\frac{1}{2}x) - 2)} - \frac{2}{(tan(\frac{1}{2}x) - 2)})} + \frac{sec^{2}(\frac{1}{2}x)}{(\frac{tan(\frac{1}{2}x)}{(tan(\frac{1}{2}x) - 2)} - \frac{2}{(tan(\frac{1}{2}x) - 2)})(tan(\frac{1}{2}x) - 2)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!