本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(ln(x - 1) + x + 1)}{((x - 1){e}^{x})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(x - 1)}{(x{e}^{x} - {e}^{x})} + \frac{x}{(x{e}^{x} - {e}^{x})} + \frac{1}{(x{e}^{x} - {e}^{x})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(x - 1)}{(x{e}^{x} - {e}^{x})} + \frac{x}{(x{e}^{x} - {e}^{x})} + \frac{1}{(x{e}^{x} - {e}^{x})}\right)}{dx}\\=&(\frac{-({e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(x{e}^{x} - {e}^{x})^{2}})ln(x - 1) + \frac{(1 + 0)}{(x{e}^{x} - {e}^{x})(x - 1)} + (\frac{-({e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(x{e}^{x} - {e}^{x})^{2}})x + \frac{1}{(x{e}^{x} - {e}^{x})} + (\frac{-({e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(x{e}^{x} - {e}^{x})^{2}})\\=&\frac{-x{e}^{x}ln(x - 1)}{(x{e}^{x} - {e}^{x})^{2}} - \frac{x{e}^{x}}{(x{e}^{x} - {e}^{x})^{2}} + \frac{1}{(x - 1)(x{e}^{x} - {e}^{x})} - \frac{x^{2}{e}^{x}}{(x{e}^{x} - {e}^{x})^{2}} + \frac{1}{(x{e}^{x} - {e}^{x})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!