本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt({a}^{2} - {x}^{2}) - ln(\frac{(a + sqrt({a}^{2} - {x}^{2}))}{x}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(a^{2} - x^{2}) - ln(\frac{a}{x} + \frac{sqrt(a^{2} - x^{2})}{x})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(a^{2} - x^{2}) - ln(\frac{a}{x} + \frac{sqrt(a^{2} - x^{2})}{x})\right)}{dx}\\=&\frac{(0 - 2x)*\frac{1}{2}}{(a^{2} - x^{2})^{\frac{1}{2}}} - \frac{(\frac{a*-1}{x^{2}} + \frac{-sqrt(a^{2} - x^{2})}{x^{2}} + \frac{(0 - 2x)*\frac{1}{2}}{x(a^{2} - x^{2})^{\frac{1}{2}}})}{(\frac{a}{x} + \frac{sqrt(a^{2} - x^{2})}{x})}\\=&\frac{sqrt(a^{2} - x^{2})}{(\frac{a}{x} + \frac{sqrt(a^{2} - x^{2})}{x})x^{2}} + \frac{a}{(\frac{a}{x} + \frac{sqrt(a^{2} - x^{2})}{x})x^{2}} - \frac{x}{(a^{2} - x^{2})^{\frac{1}{2}}} + \frac{1}{(\frac{a}{x} + \frac{sqrt(a^{2} - x^{2})}{x})(a^{2} - x^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!