本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(144e{x}^{5} - 48{e}^{3}x - 96{x}^{3}{e}^{2})}{(3{x}^{2} + {e}^{4})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{144x^{5}e}{(3x^{2} + e^{4})} - \frac{48xe^{3}}{(3x^{2} + e^{4})} - \frac{96x^{3}e^{2}}{(3x^{2} + e^{4})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{144x^{5}e}{(3x^{2} + e^{4})} - \frac{48xe^{3}}{(3x^{2} + e^{4})} - \frac{96x^{3}e^{2}}{(3x^{2} + e^{4})}\right)}{dx}\\=&144(\frac{-(3*2x + 4e^{3}*0)}{(3x^{2} + e^{4})^{2}})x^{5}e + \frac{144*5x^{4}e}{(3x^{2} + e^{4})} + \frac{144x^{5}*0}{(3x^{2} + e^{4})} - 48(\frac{-(3*2x + 4e^{3}*0)}{(3x^{2} + e^{4})^{2}})xe^{3} - \frac{48e^{3}}{(3x^{2} + e^{4})} - \frac{48x*3e^{2}*0}{(3x^{2} + e^{4})} - 96(\frac{-(3*2x + 4e^{3}*0)}{(3x^{2} + e^{4})^{2}})x^{3}e^{2} - \frac{96*3x^{2}e^{2}}{(3x^{2} + e^{4})} - \frac{96x^{3}*2e*0}{(3x^{2} + e^{4})}\\=&\frac{-864x^{6}e}{(3x^{2} + e^{4})^{2}} + \frac{720x^{4}e}{(3x^{2} + e^{4})} + \frac{288x^{2}e^{3}}{(3x^{2} + e^{4})^{2}} - \frac{48e^{3}}{(3x^{2} + e^{4})} + \frac{576x^{4}e^{2}}{(3x^{2} + e^{4})^{2}} - \frac{288x^{2}e^{2}}{(3x^{2} + e^{4})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!