本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{0.0015}{(1 + \frac{1500}{10000x})} + (-0.000942)e^{\frac{1500}{x}}{(1 - e^{\frac{-1500}{x}})}^{2.5}{(\frac{1500}{x})}^{0.5} + \frac{(-0.0004882)*1500}{x} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-0.0364835031213(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}}{x^{\frac{1}{2}}} + \frac{0.0015}{(\frac{0.15}{x} + 1)} - \frac{0.7323}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-0.0364835031213(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}}{x^{\frac{1}{2}}} + \frac{0.0015}{(\frac{0.15}{x} + 1)} - \frac{0.7323}{x}\right)}{dx}\\=&\frac{-0.0364835031213(2.5(-e^{\frac{-1500}{x}} + 1)^{\frac{3}{2}}(\frac{-e^{\frac{-1500}{x}}*-1500*-1}{x^{2}} + 0))e^{\frac{1500}{x}}}{x^{\frac{1}{2}}} - \frac{0.0364835031212739(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}*-0.5e^{\frac{1500}{x}}}{x^{\frac{3}{2}}} - \frac{0.0364835031212739(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}*1500*-1}{x^{\frac{1}{2}}x^{2}} + 0.0015(\frac{-(\frac{0.15*-1}{x^{2}} + 0)}{(\frac{0.15}{x} + 1)^{2}}) - \frac{0.7323*-1}{x^{2}}\\=&\frac{136.813136704777(-e^{\frac{-1500}{x}} + 1)^{\frac{3}{2}}e^{\frac{-1500}{x}}e^{\frac{1500}{x}}}{x^{\frac{5}{2}}} + \frac{0.0182417515606369(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}}{x^{\frac{3}{2}}} + \frac{54.7252546819108(-e^{\frac{-1500}{x}} + 1)^{\frac{5}{2}}e^{\frac{1500}{x}}}{x^{\frac{5}{2}}} + \frac{0.000225}{(\frac{0.15}{x} + 1)(\frac{0.15}{x} + 1)x^{2}} + \frac{0.7323}{x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!