本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{(1 - x)}{(1 + x)}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\right)}{dx}\\=&\frac{(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))*\frac{1}{2}}{(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}}\\=&\frac{x}{2(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{1}{2(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{1}{2(x + 1)(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{x}{2(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{1}{2(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{1}{2(x + 1)(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{-2(1 + 0)}{(x + 1)^{3}})x}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}})x}{2(x + 1)^{2}} + \frac{1}{2(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{(\frac{-2(1 + 0)}{(x + 1)^{3}})}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}})}{2(x + 1)^{2}} - \frac{(\frac{-(1 + 0)}{(x + 1)^{2}})}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{(\frac{\frac{-1}{2}(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}})}{2(x + 1)}\\=&\frac{-x}{(x + 1)^{3}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{x^{2}}{4(x + 1)^{4}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}} + \frac{x}{4(x + 1)^{3}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}} + \frac{x}{2(x + 1)^{4}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}} + \frac{x}{4(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}(x + 1)^{3}} + \frac{1}{(x + 1)^{2}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{1}{4(x + 1)^{4}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}} + \frac{1}{(x + 1)^{3}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}} - \frac{1}{4(x + 1)^{3}(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}} - \frac{1}{4(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}(x + 1)^{3}} - \frac{1}{4(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{3}{2}}(x + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!