本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{4}tan(({x}^{3})(e^{x}))e^{({x}^{2}){(sec({x}^{5}))}^{3}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{4}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{4}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x})\right)}{dx}\\=&4x^{3}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x}) + x^{4}e^{x^{2}sec^{3}(x^{5})}(2xsec^{3}(x^{5}) + x^{2}*3sec^{3}(x^{5})tan(x^{5})*5x^{4})tan(x^{3}e^{x}) + x^{4}e^{x^{2}sec^{3}(x^{5})}sec^{2}(x^{3}e^{x})(3x^{2}e^{x} + x^{3}e^{x})\\=&2x^{5}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x})sec^{3}(x^{5}) + 15x^{10}e^{x^{2}sec^{3}(x^{5})}tan(x^{5})tan(x^{3}e^{x})sec^{3}(x^{5}) + 4x^{3}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x}) + 3x^{6}e^{x^{2}sec^{3}(x^{5})}e^{x}sec^{2}(x^{3}e^{x}) + x^{7}e^{x}e^{x^{2}sec^{3}(x^{5})}sec^{2}(x^{3}e^{x})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!