本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - sec(x))}{tan(x)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{sec(x)}{tan(x)} + \frac{1}{tan(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{sec(x)}{tan(x)} + \frac{1}{tan(x)}\right)}{dx}\\=& - \frac{-sec^{2}(x)(1)sec(x)}{tan^{2}(x)} - \frac{sec(x)tan(x)}{tan(x)} + \frac{-sec^{2}(x)(1)}{tan^{2}(x)}\\=&\frac{sec^{3}(x)}{tan^{2}(x)} - sec(x) - \frac{sec^{2}(x)}{tan^{2}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sec^{3}(x)}{tan^{2}(x)} - sec(x) - \frac{sec^{2}(x)}{tan^{2}(x)}\right)}{dx}\\=&\frac{-2sec^{2}(x)(1)sec^{3}(x)}{tan^{3}(x)} + \frac{3sec^{3}(x)tan(x)}{tan^{2}(x)} - sec(x)tan(x) - \frac{-2sec^{2}(x)(1)sec^{2}(x)}{tan^{3}(x)} - \frac{2sec^{2}(x)tan(x)}{tan^{2}(x)}\\=& - \frac{2sec^{5}(x)}{tan^{3}(x)} + \frac{3sec^{3}(x)}{tan(x)} - tan(x)sec(x) + \frac{2sec^{4}(x)}{tan^{3}(x)} - \frac{2sec^{2}(x)}{tan(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!