数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 14 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{x}^{2}tan(x)sin(x) 关于 x 的 14 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2}sin(x)tan(x)\\\\ &\color{blue}{函数的 14 阶导数:} \\=&4071022592sin(x)tan(x)sec^{12}(x) + 772681728cos(x)sec^{12}(x) + 19790045184cos(x)tan^{2}(x)sec^{10}(x) - 317757440cos(x)sec^{10}(x) - 4249749504sin(x)tan(x)sec^{10}(x) + 31964162048sin(x)tan^{3}(x)sec^{10}(x) + 39207168cos(x)sec^{8}(x) - 22115917824sin(x)tan^{3}(x)sec^{8}(x) + 714954240sin(x)tan(x)sec^{8}(x) + 46417373184cos(x)tan^{4}(x)sec^{8}(x) - 2306304cos(x)sec^{6}(x) + 40476520448sin(x)tan^{5}(x)sec^{8}(x) + 2214051840sin(x)tan^{3}(x)sec^{6}(x) + 80080cos(x)sec^{4}(x) - 5494128640cos(x)tan^{2}(x)sec^{8}(x) - 45741696sin(x)tan(x)sec^{6}(x) - 15673641984sin(x)tan^{5}(x)sec^{6}(x) + 10286768128sin(x)tan^{7}(x)sec^{6}(x) - 69957888sin(x)tan^{3}(x)sec^{4}(x) - 7441674240cos(x)tan^{4}(x)sec^{6}(x) + 691891200sin(x)tan^{5}(x)sec^{4}(x) - 1543686144sin(x)tan^{7}(x)sec^{4}(x) + 415134720cos(x)tan^{2}(x)sec^{6}(x) + 1441440sin(x)tan(x)sec^{4}(x) + 379445248sin(x)tan^{9}(x)sec^{4}(x) + 19063209984cos(x)tan^{6}(x)sec^{6}(x) + 262918656cos(x)tan^{4}(x)sec^{4}(x) - 12684672cos(x)tan^{2}(x)sec^{4}(x) - 1265904640cos(x)tan^{6}(x)sec^{4}(x) + 1132744704cos(x)tan^{8}(x)sec^{4}(x) + 720720sin(x)tan^{3}(x)sec^{2}(x) - 2306304cos(x)tan^{4}(x)sec^{2}(x) - 5381376sin(x)tan^{5}(x)sec^{2}(x) + 9225216cos(x)tan^{6}(x)sec^{2}(x) + 11531520sin(x)tan^{7}(x)sec^{2}(x) - 10250240cos(x)tan^{8}(x)sec^{2}(x) - 6150144sin(x)tan^{9}(x)sec^{2}(x) + 2236416cos(x)tan^{10}(x)sec^{2}(x) - 24024sin(x)tan(x)sec^{2}(x) + 160160cos(x)tan^{2}(x)sec^{2}(x) + 372736sin(x)tan^{11}(x)sec^{2}(x) - 2184cos(x)sec^{2}(x) + 182sin(x)tan(x) + 8142045184xcos(x)tan(x)sec^{12}(x) + 626311168xsin(x)sec^{14}(x) + 22268424192xsin(x)tan^{2}(x)sec^{12}(x) - 772681728xsin(x)sec^{12}(x) + 1903757312x^{2}sin(x)tan(x)sec^{14}(x) + 11134212096x^{2}cos(x)tan^{2}(x)sec^{12}(x) + 63928324096xcos(x)tan^{3}(x)sec^{10}(x) + 158878720xsin(x)sec^{10}(x) + 21016670208x^{2}sin(x)tan^{3}(x)sec^{12}(x) - 2833166336xcos(x)tan(x)sec^{10}(x) - 19790045184xsin(x)tan^{2}(x)sec^{10}(x) - 2035511296x^{2}sin(x)tan(x)sec^{12}(x) + 80311418880xsin(x)tan^{4}(x)sec^{10}(x) - 13069056xsin(x)sec^{8}(x) + 313155584x^{2}cos(x)sec^{14}(x) - 128780288x^{2}cos(x)sec^{12}(x) - 3298340864x^{2}cos(x)tan^{2}(x)sec^{10}(x) - 15982081024x^{2}sin(x)tan^{3}(x)sec^{10}(x) + 354145792x^{2}sin(x)tan(x)sec^{10}(x) + 40155709440x^{2}cos(x)tan^{4}(x)sec^{10}(x) + 41731645440x^{2}sin(x)tan^{5}(x)sec^{10}(x) + 80953040896xcos(x)tan^{5}(x)sec^{8}(x) + 576576xsin(x)sec^{6}(x) + 285981696xcos(x)tan(x)sec^{8}(x) + 2747064320xsin(x)tan^{2}(x)sec^{8}(x) - 14743945216xcos(x)tan^{3}(x)sec^{8}(x) - 46417373184xsin(x)tan^{4}(x)sec^{8}(x) + 60895313920xsin(x)tan^{6}(x)sec^{8}(x) - 16016xsin(x)sec^{4}(x) + 274706432x^{2}cos(x)tan^{2}(x)sec^{8}(x) - 23831808x^{2}sin(x)tan(x)sec^{8}(x) + 1842993152x^{2}sin(x)tan^{3}(x)sec^{8}(x) + 15887872x^{2}cos(x)sec^{10}(x) - 933504x^{2}cos(x)sec^{8}(x) - 20238260224x^{2}sin(x)tan^{5}(x)sec^{8}(x) - 7736228864x^{2}cos(x)tan^{4}(x)sec^{8}(x) + 20261765120x^{2}sin(x)tan^{7}(x)sec^{8}(x) + 30447656960x^{2}cos(x)tan^{6}(x)sec^{8}(x) + 3720837120xsin(x)tan^{4}(x)sec^{6}(x) + 32032x^{2}cos(x)sec^{6}(x) - 19063209984xsin(x)tan^{6}(x)sec^{6}(x) + 885620736xcos(x)tan^{3}(x)sec^{6}(x) - 138378240xsin(x)tan^{2}(x)sec^{6}(x) + 10020864000xsin(x)tan^{8}(x)sec^{6}(x) - 10449094656xcos(x)tan^{5}(x)sec^{6}(x) + 816816x^{2}sin(x)tan(x)sec^{6}(x) - 73801728x^{2}sin(x)tan^{3}(x)sec^{6}(x) - 728x^{2}cos(x)sec^{4}(x) - 13069056xcos(x)tan(x)sec^{6}(x) + 1306136832x^{2}sin(x)tan^{5}(x)sec^{6}(x) + 20573536256xcos(x)tan^{7}(x)sec^{6}(x) - 5143384064x^{2}sin(x)tan^{7}(x)sec^{6}(x) - 9884160x^{2}cos(x)tan^{2}(x)sec^{6}(x) + 2230947840x^{2}sin(x)tan^{9}(x)sec^{6}(x) - 87639552xsin(x)tan^{4}(x)sec^{4}(x) + 372083712x^{2}cos(x)tan^{4}(x)sec^{6}(x) + 632952320xsin(x)tan^{6}(x)sec^{4}(x) - 3177201664x^{2}cos(x)tan^{6}(x)sec^{6}(x) - 1132744704xsin(x)tan^{8}(x)sec^{4}(x) + 3171168xsin(x)tan^{2}(x)sec^{4}(x) + 5010432000x^{2}cos(x)tan^{8}(x)sec^{6}(x) + 234135552xsin(x)tan^{10}(x)sec^{4}(x) + 276756480xcos(x)tan^{5}(x)sec^{4}(x) - 16016x^{2}sin(x)tan(x)sec^{4}(x) + 1249248x^{2}sin(x)tan^{3}(x)sec^{4}(x) - 1029124096xcos(x)tan^{7}(x)sec^{4}(x) - 23063040x^{2}sin(x)tan^{5}(x)sec^{4}(x) + 320320xcos(x)tan(x)sec^{4}(x) - 19987968xcos(x)tan^{3}(x)sec^{4}(x) + 128640512x^{2}sin(x)tan^{7}(x)sec^{4}(x) - 189722624x^{2}sin(x)tan^{9}(x)sec^{4}(x) + 33497088x^{2}sin(x)tan^{11}(x)sec^{4}(x) + 758890496xcos(x)tan^{9}(x)sec^{4}(x) + 176176x^{2}cos(x)tan^{2}(x)sec^{4}(x) - 6259968x^{2}cos(x)tan^{4}(x)sec^{4}(x) + 63295232x^{2}cos(x)tan^{6}(x)sec^{4}(x) - 188790784x^{2}cos(x)tan^{8}(x)sec^{4}(x) + 117067776x^{2}cos(x)tan^{10}(x)sec^{4}(x) - 1537536xcos(x)tan^{5}(x)sec^{2}(x) - 3075072xsin(x)tan^{6}(x)sec^{2}(x) + 4612608xcos(x)tan^{7}(x)sec^{2}(x) + 5125120xsin(x)tan^{8}(x)sec^{2}(x) - 4100096xcos(x)tan^{9}(x)sec^{2}(x) - 2236416xsin(x)tan^{10}(x)sec^{2}(x) + 745472xcos(x)tan^{11}(x)sec^{2}(x) - 4368xcos(x)tan(x)sec^{2}(x) - 32032xsin(x)tan^{2}(x)sec^{2}(x) + 160160xcos(x)tan^{3}(x)sec^{2}(x) + 576576xsin(x)tan^{4}(x)sec^{2}(x) + 114688xsin(x)tan^{12}(x)sec^{2}(x) + 364xsin(x)sec^{2}(x) - 1456x^{2}cos(x)tan^{2}(x)sec^{2}(x) - 8008x^{2}sin(x)tan^{3}(x)sec^{2}(x) + 32032x^{2}cos(x)tan^{4}(x)sec^{2}(x) + 96096x^{2}sin(x)tan^{5}(x)sec^{2}(x) - 219648x^{2}cos(x)tan^{6}(x)sec^{2}(x) - 384384x^{2}sin(x)tan^{7}(x)sec^{2}(x) + 512512x^{2}cos(x)tan^{8}(x)sec^{2}(x) + 512512x^{2}sin(x)tan^{9}(x)sec^{2}(x) - 372736x^{2}cos(x)tan^{10}(x)sec^{2}(x) - 186368x^{2}sin(x)tan^{11}(x)sec^{2}(x) + 57344x^{2}cos(x)tan^{12}(x)sec^{2}(x) + 8192x^{2}sin(x)tan^{13}(x)sec^{2}(x) + 182x^{2}sin(x)tan(x)sec^{2}(x) + 28xcos(x)tan(x) + 14x^{2}cos(x)sec^{2}(x) - x^{2}sin(x)tan(x)\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。