本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(1952 - x){(3.48 - 2x)}^{2} - (1.19 - x){(3.81 - 2x)}^{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - 4x^{3} + 6.96x^{2} + 6.96x^{2} - 12.1104x + 4x^{3} - 7.62x^{2} - 7.62x^{2} + 14.5161x - 4.76x^{2} + 9.0678x + 9.0678x + 7808x^{2} - 13585.92x - 13585.92x + 23622.226641\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - 4x^{3} + 6.96x^{2} + 6.96x^{2} - 12.1104x + 4x^{3} - 7.62x^{2} - 7.62x^{2} + 14.5161x - 4.76x^{2} + 9.0678x + 9.0678x + 7808x^{2} - 13585.92x - 13585.92x + 23622.226641\right)}{dx}\\=& - 4*3x^{2} + 6.96*2x + 6.96*2x - 12.1104 + 4*3x^{2} - 7.62*2x - 7.62*2x + 14.5161 - 4.76*2x + 9.0678 + 9.0678 + 7808*2x - 13585.92 - 13585.92 + 0\\=& - 12x^{2} + 13.92x + 13.92x + 12x^{2} - 15.24x - 15.24x - 9.52x + 15616x - 27151.2987\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!