本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(0.00152 - x){(0.00348 - 2x)}^{2} - (0.00119 - x){(0.00381 - 2x)}^{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - 4x^{3} + 0.00696x^{2} + 0.00696x^{2} - 0.0000121104x + 4x^{3} - 0.00762x^{2} - 0.00762x^{2} + 0.0000145161x - 0.00476x^{2} + 0.0000090678x + 0.0000090678x + 0.00608x^{2} - 0.0000105792x - 0.0000105792x + 0.000000001133649\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - 4x^{3} + 0.00696x^{2} + 0.00696x^{2} - 0.0000121104x + 4x^{3} - 0.00762x^{2} - 0.00762x^{2} + 0.0000145161x - 0.00476x^{2} + 0.0000090678x + 0.0000090678x + 0.00608x^{2} - 0.0000105792x - 0.0000105792x + 0.000000001133649\right)}{dx}\\=& - 4*3x^{2} + 0.00696*2x + 0.00696*2x - 0.0000121104 + 4*3x^{2} - 0.00762*2x - 0.00762*2x + 0.0000145161 - 0.00476*2x + 0.0000090678 + 0.0000090678 + 0.00608*2x - 0.0000105792 - 0.0000105792 + 0\\=& - 12x^{2} + 0.01392x + 0.01392x + 12x^{2} - 0.01524x - 0.01524x - 0.00952x + 0.01216x - 0.000000617099999999998\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!