本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(sec(x) + tan(x))}^{5} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sec^{5}(x) + 5tan(x)sec^{4}(x) + 10tan^{2}(x)sec^{3}(x) + 10tan^{3}(x)sec^{2}(x) + 5tan^{4}(x)sec(x) + tan^{5}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sec^{5}(x) + 5tan(x)sec^{4}(x) + 10tan^{2}(x)sec^{3}(x) + 10tan^{3}(x)sec^{2}(x) + 5tan^{4}(x)sec(x) + tan^{5}(x)\right)}{dx}\\=&5sec^{5}(x)tan(x) + 5sec^{2}(x)(1)sec^{4}(x) + 5tan(x)*4sec^{4}(x)tan(x) + 10*2tan(x)sec^{2}(x)(1)sec^{3}(x) + 10tan^{2}(x)*3sec^{3}(x)tan(x) + 10*3tan^{2}(x)sec^{2}(x)(1)sec^{2}(x) + 10tan^{3}(x)*2sec^{2}(x)tan(x) + 5*4tan^{3}(x)sec^{2}(x)(1)sec(x) + 5tan^{4}(x)sec(x)tan(x) + 5tan^{4}(x)sec^{2}(x)(1)\\=&25tan(x)sec^{5}(x) + 5sec^{6}(x) + 50tan^{2}(x)sec^{4}(x) + 50tan^{3}(x)sec^{3}(x) + 25tan^{4}(x)sec^{2}(x) + 5tan^{5}(x)sec(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!