本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数Aln({({x}^{2} + {z}^{2})}^{\frac{1}{2}} + z) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = Aln((x^{2} + z^{2})^{\frac{1}{2}} + z)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( Aln((x^{2} + z^{2})^{\frac{1}{2}} + z)\right)}{dx}\\=&\frac{A((\frac{\frac{1}{2}(2x + 0)}{(x^{2} + z^{2})^{\frac{1}{2}}}) + 0)}{((x^{2} + z^{2})^{\frac{1}{2}} + z)}\\=&\frac{Ax}{((x^{2} + z^{2})^{\frac{1}{2}} + z)(x^{2} + z^{2})^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{Ax}{((x^{2} + z^{2})^{\frac{1}{2}} + z)(x^{2} + z^{2})^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{-((\frac{\frac{1}{2}(2x + 0)}{(x^{2} + z^{2})^{\frac{1}{2}}}) + 0)}{((x^{2} + z^{2})^{\frac{1}{2}} + z)^{2}})Ax}{(x^{2} + z^{2})^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + z^{2})^{\frac{3}{2}}})Ax}{((x^{2} + z^{2})^{\frac{1}{2}} + z)} + \frac{A}{((x^{2} + z^{2})^{\frac{1}{2}} + z)(x^{2} + z^{2})^{\frac{1}{2}}}\\=&\frac{-Ax^{2}}{((x^{2} + z^{2})^{\frac{1}{2}} + z)^{2}(x^{2} + z^{2})} - \frac{Ax^{2}}{((x^{2} + z^{2})^{\frac{1}{2}} + z)(x^{2} + z^{2})^{\frac{3}{2}}} + \frac{A}{((x^{2} + z^{2})^{\frac{1}{2}} + z)(x^{2} + z^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!