本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{-{(y - z)}^{2}}{(4x(1 - x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{2yz}{(4x - 4x^{2})} - \frac{y^{2}}{(4x - 4x^{2})} - \frac{z^{2}}{(4x - 4x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{2yz}{(4x - 4x^{2})} - \frac{y^{2}}{(4x - 4x^{2})} - \frac{z^{2}}{(4x - 4x^{2})}\right)}{dx}\\=&2(\frac{-(4 - 4*2x)}{(4x - 4x^{2})^{2}})yz + 0 - (\frac{-(4 - 4*2x)}{(4x - 4x^{2})^{2}})y^{2} + 0 - (\frac{-(4 - 4*2x)}{(4x - 4x^{2})^{2}})z^{2} + 0\\=&\frac{16yzx}{(4x - 4x^{2})^{2}} - \frac{8yz}{(4x - 4x^{2})^{2}} - \frac{8y^{2}x}{(4x - 4x^{2})^{2}} + \frac{4y^{2}}{(4x - 4x^{2})^{2}} - \frac{8z^{2}x}{(4x - 4x^{2})^{2}} + \frac{4z^{2}}{(4x - 4x^{2})^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!