数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 a 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(({a}^{2} + {b}^{2})(d - g) + ({c}^{2} + {d}^{2})(g - b) + ({f}^{2} + {g}^{2})(d - b))}{(2a(d - g) - 2b(c - f) + 2cg - 2fd)} 关于 a 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{da^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{ga^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{b^{2}d}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{b^{2}g}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{gc^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{bc^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{d^{2}g}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{bd^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{df^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{bf^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{dg^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{bg^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{da^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{ga^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{b^{2}d}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{b^{2}g}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{gc^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{bc^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{d^{2}g}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{bd^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{df^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{bf^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{dg^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{bg^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)}\right)}{da}\\=&(\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})da^{2} + \frac{d*2a}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})ga^{2} - \frac{g*2a}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})b^{2}d + 0 - (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})b^{2}g + 0 + (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})gc^{2} + 0 - (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})bc^{2} + 0 + (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})d^{2}g + 0 - (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})bd^{2} + 0 + (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})df^{2} + 0 - (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})bf^{2} + 0 + (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})dg^{2} + 0 - (\frac{-(2d - 2g + 0 + 0 + 0 + 0)}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}})bg^{2} + 0\\=&\frac{-2d^{2}a^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{4dga^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{2da}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} - \frac{2g^{2}a^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2ga}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)} + \frac{4b^{2}dg}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{2bdc^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2bgc^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2dgc^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{2g^{2}c^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2bd^{2}g}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2bgf^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{2dgf^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{2bdf^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{2bdg^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2d^{2}f^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2d^{3}g}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{2bd^{3}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2b^{2}g^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} + \frac{2dg^{3}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2b^{2}d^{2}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}} - \frac{2bg^{3}}{(2da - 2ga - 2bc + 2bf + 2gc - 2df)^{2}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。