本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x(2{e}^{x} - 2 - x)(sqrt(1 + xsin(x)) - sqrt(cos(x))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2x{e}^{x}sqrt(xsin(x) + 1) - 2x{e}^{x}sqrt(cos(x)) - 2xsqrt(xsin(x) + 1) + 2xsqrt(cos(x)) - x^{2}sqrt(xsin(x) + 1) + x^{2}sqrt(cos(x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2x{e}^{x}sqrt(xsin(x) + 1) - 2x{e}^{x}sqrt(cos(x)) - 2xsqrt(xsin(x) + 1) + 2xsqrt(cos(x)) - x^{2}sqrt(xsin(x) + 1) + x^{2}sqrt(cos(x))\right)}{dx}\\=&2{e}^{x}sqrt(xsin(x) + 1) + 2x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sqrt(xsin(x) + 1) + \frac{2x{e}^{x}(sin(x) + xcos(x) + 0)*\frac{1}{2}}{(xsin(x) + 1)^{\frac{1}{2}}} - 2{e}^{x}sqrt(cos(x)) - 2x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sqrt(cos(x)) - \frac{2x{e}^{x}*-sin(x)*\frac{1}{2}}{(cos(x))^{\frac{1}{2}}} - 2sqrt(xsin(x) + 1) - \frac{2x(sin(x) + xcos(x) + 0)*\frac{1}{2}}{(xsin(x) + 1)^{\frac{1}{2}}} + 2sqrt(cos(x)) + \frac{2x*-sin(x)*\frac{1}{2}}{(cos(x))^{\frac{1}{2}}} - 2xsqrt(xsin(x) + 1) - \frac{x^{2}(sin(x) + xcos(x) + 0)*\frac{1}{2}}{(xsin(x) + 1)^{\frac{1}{2}}} + 2xsqrt(cos(x)) + \frac{x^{2}*-sin(x)*\frac{1}{2}}{(cos(x))^{\frac{1}{2}}}\\=&2{e}^{x}sqrt(xsin(x) + 1) + 2x{e}^{x}sqrt(xsin(x) + 1) + \frac{x{e}^{x}sin(x)}{(xsin(x) + 1)^{\frac{1}{2}}} + \frac{x^{2}{e}^{x}cos(x)}{(xsin(x) + 1)^{\frac{1}{2}}} - 2{e}^{x}sqrt(cos(x)) - 2x{e}^{x}sqrt(cos(x)) + \frac{x{e}^{x}sin(x)}{cos^{\frac{1}{2}}(x)} - 2sqrt(xsin(x) + 1) - \frac{xsin(x)}{(xsin(x) + 1)^{\frac{1}{2}}} - \frac{x^{2}cos(x)}{(xsin(x) + 1)^{\frac{1}{2}}} + 2sqrt(cos(x)) - \frac{xsin(x)}{cos^{\frac{1}{2}}(x)} - 2xsqrt(xsin(x) + 1) - \frac{x^{2}sin(x)}{2(xsin(x) + 1)^{\frac{1}{2}}} - \frac{x^{3}cos(x)}{2(xsin(x) + 1)^{\frac{1}{2}}} + 2xsqrt(cos(x)) - \frac{x^{2}sin(x)}{2cos^{\frac{1}{2}}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!