本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{(-2{x}^{2} + 1)}{(3{x}^{2} - 1)})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{-2x^{2}}{(3x^{2} - 1)} + \frac{1}{(3x^{2} - 1)})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{-2x^{2}}{(3x^{2} - 1)} + \frac{1}{(3x^{2} - 1)})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(-2(\frac{-(3*2x + 0)}{(3x^{2} - 1)^{2}})x^{2} - \frac{2*2x}{(3x^{2} - 1)} + (\frac{-(3*2x + 0)}{(3x^{2} - 1)^{2}}))}{(\frac{-2x^{2}}{(3x^{2} - 1)} + \frac{1}{(3x^{2} - 1)})^{\frac{1}{2}}})\\=&\frac{6x^{3}}{(\frac{-2x^{2}}{(3x^{2} - 1)} + \frac{1}{(3x^{2} - 1)})^{\frac{1}{2}}(3x^{2} - 1)^{2}} - \frac{2x}{(\frac{-2x^{2}}{(3x^{2} - 1)} + \frac{1}{(3x^{2} - 1)})^{\frac{1}{2}}(3x^{2} - 1)} - \frac{3x}{(\frac{-2x^{2}}{(3x^{2} - 1)} + \frac{1}{(3x^{2} - 1)})^{\frac{1}{2}}(3x^{2} - 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!