本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{1}{10} + {x}^{2})*\frac{1}{10}{\frac{1}{(\frac{1}{10} + x - {x}^{2})}}^{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{10}x^{2}}{(x - x^{2} + \frac{1}{10})^{2}} + \frac{\frac{1}{100}}{(x - x^{2} + \frac{1}{10})^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{10}x^{2}}{(x - x^{2} + \frac{1}{10})^{2}} + \frac{\frac{1}{100}}{(x - x^{2} + \frac{1}{10})^{2}}\right)}{dx}\\=&\frac{1}{10}(\frac{-2(1 - 2x + 0)}{(x - x^{2} + \frac{1}{10})^{3}})x^{2} + \frac{\frac{1}{10}*2x}{(x - x^{2} + \frac{1}{10})^{2}} + \frac{1}{100}(\frac{-2(1 - 2x + 0)}{(x - x^{2} + \frac{1}{10})^{3}})\\=&\frac{2x^{3}}{5(x - x^{2} + \frac{1}{10})^{3}} - \frac{x^{2}}{5(x - x^{2} + \frac{1}{10})^{3}} + \frac{x}{5(x - x^{2} + \frac{1}{10})^{2}} + \frac{x}{25(x - x^{2} + \frac{1}{10})^{3}} - \frac{1}{50(x - x^{2} + \frac{1}{10})^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!