本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(\frac{1}{10} + {x}^{2})*\frac{1}{10}}{(\frac{1}{10} + x - {x}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{10}x^{2}}{(x - x^{2} + \frac{1}{10})} + \frac{\frac{1}{100}}{(x - x^{2} + \frac{1}{10})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{10}x^{2}}{(x - x^{2} + \frac{1}{10})} + \frac{\frac{1}{100}}{(x - x^{2} + \frac{1}{10})}\right)}{dx}\\=&\frac{1}{10}(\frac{-(1 - 2x + 0)}{(x - x^{2} + \frac{1}{10})^{2}})x^{2} + \frac{\frac{1}{10}*2x}{(x - x^{2} + \frac{1}{10})} + \frac{1}{100}(\frac{-(1 - 2x + 0)}{(x - x^{2} + \frac{1}{10})^{2}})\\=&\frac{x^{3}}{5(x - x^{2} + \frac{1}{10})^{2}} - \frac{x^{2}}{10(x - x^{2} + \frac{1}{10})^{2}} + \frac{x}{5(x - x^{2} + \frac{1}{10})} + \frac{x}{50(x - x^{2} + \frac{1}{10})^{2}} - \frac{1}{100(x - x^{2} + \frac{1}{10})^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!