本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({x}^{2} + 1)}{({x}^{3} + 1)} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(x^{3} + 1)} + \frac{1}{(x^{3} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(x^{3} + 1)} + \frac{1}{(x^{3} + 1)}\right)}{dx}\\=&(\frac{-(3x^{2} + 0)}{(x^{3} + 1)^{2}})x^{2} + \frac{2x}{(x^{3} + 1)} + (\frac{-(3x^{2} + 0)}{(x^{3} + 1)^{2}})\\=&\frac{-3x^{4}}{(x^{3} + 1)^{2}} + \frac{2x}{(x^{3} + 1)} - \frac{3x^{2}}{(x^{3} + 1)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-3x^{4}}{(x^{3} + 1)^{2}} + \frac{2x}{(x^{3} + 1)} - \frac{3x^{2}}{(x^{3} + 1)^{2}}\right)}{dx}\\=&-3(\frac{-2(3x^{2} + 0)}{(x^{3} + 1)^{3}})x^{4} - \frac{3*4x^{3}}{(x^{3} + 1)^{2}} + 2(\frac{-(3x^{2} + 0)}{(x^{3} + 1)^{2}})x + \frac{2}{(x^{3} + 1)} - 3(\frac{-2(3x^{2} + 0)}{(x^{3} + 1)^{3}})x^{2} - \frac{3*2x}{(x^{3} + 1)^{2}}\\=&\frac{18x^{6}}{(x^{3} + 1)^{3}} - \frac{18x^{3}}{(x^{3} + 1)^{2}} + \frac{18x^{4}}{(x^{3} + 1)^{3}} - \frac{6x}{(x^{3} + 1)^{2}} + \frac{2}{(x^{3} + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{18x^{6}}{(x^{3} + 1)^{3}} - \frac{18x^{3}}{(x^{3} + 1)^{2}} + \frac{18x^{4}}{(x^{3} + 1)^{3}} - \frac{6x}{(x^{3} + 1)^{2}} + \frac{2}{(x^{3} + 1)}\right)}{dx}\\=&18(\frac{-3(3x^{2} + 0)}{(x^{3} + 1)^{4}})x^{6} + \frac{18*6x^{5}}{(x^{3} + 1)^{3}} - 18(\frac{-2(3x^{2} + 0)}{(x^{3} + 1)^{3}})x^{3} - \frac{18*3x^{2}}{(x^{3} + 1)^{2}} + 18(\frac{-3(3x^{2} + 0)}{(x^{3} + 1)^{4}})x^{4} + \frac{18*4x^{3}}{(x^{3} + 1)^{3}} - 6(\frac{-2(3x^{2} + 0)}{(x^{3} + 1)^{3}})x - \frac{6}{(x^{3} + 1)^{2}} + 2(\frac{-(3x^{2} + 0)}{(x^{3} + 1)^{2}})\\=&\frac{-162x^{8}}{(x^{3} + 1)^{4}} + \frac{216x^{5}}{(x^{3} + 1)^{3}} - \frac{60x^{2}}{(x^{3} + 1)^{2}} - \frac{162x^{6}}{(x^{3} + 1)^{4}} + \frac{108x^{3}}{(x^{3} + 1)^{3}} - \frac{6}{(x^{3} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!