本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x*2sin(x)cos(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2xsin(x)cos(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2xsin(x)cos(x)\right)}{dx}\\=&2sin(x)cos(x) + 2xcos(x)cos(x) + 2xsin(x)*-sin(x)\\=&2sin(x)cos(x) + 2xcos^{2}(x) - 2xsin^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2sin(x)cos(x) + 2xcos^{2}(x) - 2xsin^{2}(x)\right)}{dx}\\=&2cos(x)cos(x) + 2sin(x)*-sin(x) + 2cos^{2}(x) + 2x*-2cos(x)sin(x) - 2sin^{2}(x) - 2x*2sin(x)cos(x)\\=&4cos^{2}(x) - 4sin^{2}(x) - 8xsin(x)cos(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 4cos^{2}(x) - 4sin^{2}(x) - 8xsin(x)cos(x)\right)}{dx}\\=&4*-2cos(x)sin(x) - 4*2sin(x)cos(x) - 8sin(x)cos(x) - 8xcos(x)cos(x) - 8xsin(x)*-sin(x)\\=&-24sin(x)cos(x) - 8xcos^{2}(x) + 8xsin^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -24sin(x)cos(x) - 8xcos^{2}(x) + 8xsin^{2}(x)\right)}{dx}\\=&-24cos(x)cos(x) - 24sin(x)*-sin(x) - 8cos^{2}(x) - 8x*-2cos(x)sin(x) + 8sin^{2}(x) + 8x*2sin(x)cos(x)\\=&-32cos^{2}(x) + 32sin^{2}(x) + 32xsin(x)cos(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!