本次共计算 1 个题目:每一题对 y 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{2x}{sqrt({x}^{2} + {y}^{2})} 关于 y 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{2x}{sqrt(x^{2} + y^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{2x}{sqrt(x^{2} + y^{2})}\right)}{dy}\\=&\frac{2x*-(0 + 2y)*\frac{1}{2}}{(x^{2} + y^{2})(x^{2} + y^{2})^{\frac{1}{2}}}\\=&\frac{-2xy}{(x^{2} + y^{2})^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2xy}{(x^{2} + y^{2})^{\frac{3}{2}}}\right)}{dy}\\=&-2(\frac{\frac{-3}{2}(0 + 2y)}{(x^{2} + y^{2})^{\frac{5}{2}}})xy - \frac{2x}{(x^{2} + y^{2})^{\frac{3}{2}}}\\=&\frac{6xy^{2}}{(x^{2} + y^{2})^{\frac{5}{2}}} - \frac{2x}{(x^{2} + y^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!