本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt({(a - \frac{b}{x})}^{2} + {(b - ax)}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(a^{2}x^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abx + a^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(a^{2}x^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abx + a^{2})\right)}{dx}\\=&\frac{(a^{2}*2x - \frac{2ab*-1}{x^{2}} + \frac{b^{2}*-2}{x^{3}} + 0 - 2ab + 0)*\frac{1}{2}}{(a^{2}x^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abx + a^{2})^{\frac{1}{2}}}\\=&\frac{a^{2}x}{(a^{2}x^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abx + a^{2})^{\frac{1}{2}}} + \frac{ab}{(a^{2}x^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abx + a^{2})^{\frac{1}{2}}x^{2}} - \frac{b^{2}}{(a^{2}x^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abx + a^{2})^{\frac{1}{2}}x^{3}} - \frac{ab}{(a^{2}x^{2} - \frac{2ab}{x} + \frac{b^{2}}{x^{2}} + b^{2} - 2abx + a^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!