本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数xx + \frac{x(x - 2)}{(x + 3)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2} + \frac{x^{2}}{(x + 3)} - \frac{2x}{(x + 3)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{2} + \frac{x^{2}}{(x + 3)} - \frac{2x}{(x + 3)}\right)}{dx}\\=&2x + (\frac{-(1 + 0)}{(x + 3)^{2}})x^{2} + \frac{2x}{(x + 3)} - 2(\frac{-(1 + 0)}{(x + 3)^{2}})x - \frac{2}{(x + 3)}\\=&2x - \frac{x^{2}}{(x + 3)^{2}} + \frac{2x}{(x + 3)} + \frac{2x}{(x + 3)^{2}} - \frac{2}{(x + 3)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2x - \frac{x^{2}}{(x + 3)^{2}} + \frac{2x}{(x + 3)} + \frac{2x}{(x + 3)^{2}} - \frac{2}{(x + 3)}\right)}{dx}\\=&2 - (\frac{-2(1 + 0)}{(x + 3)^{3}})x^{2} - \frac{2x}{(x + 3)^{2}} + 2(\frac{-(1 + 0)}{(x + 3)^{2}})x + \frac{2}{(x + 3)} + 2(\frac{-2(1 + 0)}{(x + 3)^{3}})x + \frac{2}{(x + 3)^{2}} - 2(\frac{-(1 + 0)}{(x + 3)^{2}})\\=&\frac{2x^{2}}{(x + 3)^{3}} - \frac{4x}{(x + 3)^{2}} - \frac{4x}{(x + 3)^{3}} + \frac{4}{(x + 3)^{2}} + \frac{2}{(x + 3)} + 2\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!