本次共计算 1 个题目:每一题对 x 求 10 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{x} + {ln(x)}^{2} - sin(x) 关于 x 的 10 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {x}^{x} + ln^{2}(x) - sin(x)\\\\ &\color{blue}{函数的 10 阶导数:} \\=&{x}^{x}ln^{10}(x) + 10{x}^{x}ln^{9}(x) + \frac{45{x}^{x}ln^{8}(x)}{x} + 45{x}^{x}ln^{8}(x) + 120{x}^{x}ln^{7}(x) + \frac{360{x}^{x}ln^{7}(x)}{x} - \frac{120{x}^{x}ln^{7}(x)}{x^{2}} + 210{x}^{x}ln^{6}(x) + 252{x}^{x}ln^{5}(x) + \frac{1260{x}^{x}ln^{6}(x)}{x} + 210{x}^{x}ln^{4}(x) + 120{x}^{x}ln^{3}(x) + \frac{2520{x}^{x}ln^{5}(x)}{x} + \frac{1260{x}^{x}ln^{5}(x)}{x^{2}} + \frac{420{x}^{x}ln^{6}(x)}{x^{3}} + 45{x}^{x}ln^{2}(x) + \frac{3150{x}^{x}ln^{4}(x)}{x} + \frac{2520{x}^{x}ln^{3}(x)}{x} + \frac{5250{x}^{x}ln^{4}(x)}{x^{2}} + \frac{1260{x}^{x}ln^{2}(x)}{x} + \frac{360{x}^{x}ln(x)}{x} + \frac{8400{x}^{x}ln^{3}(x)}{x^{2}} - \frac{3150{x}^{x}ln^{4}(x)}{x^{3}} - \frac{4200{x}^{x}ln^{3}(x)}{x^{3}} - \frac{1512{x}^{x}ln^{5}(x)}{x^{4}} - \frac{210{x}^{x}ln^{6}(x)}{x^{2}} + \frac{840{x}^{x}ln^{4}(x)}{x^{4}} + \frac{6930{x}^{x}ln^{2}(x)}{x^{2}} + \frac{2940{x}^{x}ln(x)}{x^{2}} + \frac{5040{x}^{x}ln^{4}(x)}{x^{5}} - \frac{3360{x}^{x}ln^{3}(x)}{x^{5}} + \frac{5880{x}^{x}ln^{3}(x)}{x^{4}} - \frac{14400{x}^{x}ln^{3}(x)}{x^{6}} + \frac{2520{x}^{x}ln(x)}{x^{3}} - \frac{8820{x}^{x}ln^{2}(x)}{x^{5}} + \frac{8460{x}^{x}ln^{2}(x)}{x^{6}} - \frac{2310{x}^{x}ln(x)}{x^{4}} + \frac{32400{x}^{x}ln^{2}(x)}{x^{7}} + \frac{2205{x}^{x}ln^{2}(x)}{x^{4}} + \frac{9440{x}^{x}ln(x)}{x^{6}} - \frac{13680{x}^{x}ln(x)}{x^{7}} - \frac{50400{x}^{x}ln(x)}{x^{8}} + \frac{1050{x}^{x}}{x^{3}} - \frac{820{x}^{x}}{x^{6}} - \frac{5340{x}^{x}}{x^{7}} + \frac{510{x}^{x}}{x^{2}} + \frac{11016{x}^{x}}{x^{8}} + \frac{1365{x}^{x}}{x^{5}} - \frac{987{x}^{x}}{x^{4}} + 10{x}^{x}ln(x) + \frac{45{x}^{x}}{x} + \frac{40320{x}^{x}}{x^{9}} + {x}^{x} - \frac{725760ln(x)}{x^{10}} + \frac{2053152}{x^{10}} + sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!