数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{arctan(x)}^{x} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {arctan(x)}^{x}\right)}{dx}\\=&({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))\\=&{arctan(x)}^{x}ln(arctan(x)) + \frac{x{arctan(x)}^{x}}{(x^{2} + 1)arctan(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {arctan(x)}^{x}ln(arctan(x)) + \frac{x{arctan(x)}^{x}}{(x^{2} + 1)arctan(x)}\right)}{dx}\\=&({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln(arctan(x)) + \frac{{arctan(x)}^{x}(\frac{(1)}{(1 + (x)^{2})})}{(arctan(x))} + \frac{(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x{arctan(x)}^{x}}{arctan(x)} + \frac{{arctan(x)}^{x}}{(x^{2} + 1)arctan(x)} + \frac{x({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)arctan(x)} + \frac{x{arctan(x)}^{x}(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)}\\=&{arctan(x)}^{x}ln^{2}(arctan(x)) + \frac{2x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{2{arctan(x)}^{x}}{(x^{2} + 1)arctan(x)} - \frac{2x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan(x)} + \frac{x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{x{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {arctan(x)}^{x}ln^{2}(arctan(x)) + \frac{2x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{2{arctan(x)}^{x}}{(x^{2} + 1)arctan(x)} - \frac{2x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan(x)} + \frac{x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{x{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)}\right)}{dx}\\=&({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln^{2}(arctan(x)) + \frac{{arctan(x)}^{x}*2ln(arctan(x))(\frac{(1)}{(1 + (x)^{2})})}{(arctan(x))} + \frac{2(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x{arctan(x)}^{x}ln(arctan(x))}{arctan(x)} + \frac{2{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{2x({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{2x{arctan(x)}^{x}(\frac{(1)}{(1 + (x)^{2})})}{(x^{2} + 1)(arctan(x))arctan(x)} + \frac{2x{arctan(x)}^{x}ln(arctan(x))(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)} + \frac{2(\frac{-(2x + 0)}{(x^{2} + 1)^{2}}){arctan(x)}^{x}}{arctan(x)} + \frac{2({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)arctan(x)} + \frac{2{arctan(x)}^{x}(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)} - \frac{2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x^{2}{arctan(x)}^{x}}{arctan(x)} - \frac{2*2x{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan(x)} - \frac{2x^{2}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{2}arctan(x)} - \frac{2x^{2}{arctan(x)}^{x}(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}} + \frac{(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x^{2}{arctan(x)}^{x}}{arctan^{2}(x)} + \frac{2x{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{x^{2}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{x^{2}{arctan(x)}^{x}(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}} - \frac{(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x{arctan(x)}^{x}}{arctan^{2}(x)} - \frac{{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{x({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{x{arctan(x)}^{x}(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}}\\=&\frac{6{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)arctan(x)} - \frac{6x^{2}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan(x)} + {arctan(x)}^{x}ln^{3}(arctan(x)) + \frac{3x{arctan(x)}^{x}ln^{2}(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{3x^{2}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{6x{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{3x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{8x{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan(x)} - \frac{3{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{8x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan(x)} - \frac{6x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{6x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} - \frac{3x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} + \frac{2x{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{6{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)arctan(x)} - \frac{6x^{2}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan(x)} + {arctan(x)}^{x}ln^{3}(arctan(x)) + \frac{3x{arctan(x)}^{x}ln^{2}(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{3x^{2}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{6x{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{3x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{8x{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan(x)} - \frac{3{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{8x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan(x)} - \frac{6x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{6x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} - \frac{3x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} + \frac{2x{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)}\right)}{dx}\\=&\frac{6(\frac{-(2x + 0)}{(x^{2} + 1)^{2}}){arctan(x)}^{x}ln(arctan(x))}{arctan(x)} + \frac{6({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{6{arctan(x)}^{x}(\frac{(1)}{(1 + (x)^{2})})}{(x^{2} + 1)(arctan(x))arctan(x)} + \frac{6{arctan(x)}^{x}ln(arctan(x))(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)} - \frac{6(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x^{2}{arctan(x)}^{x}ln(arctan(x))}{arctan(x)} - \frac{6*2x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan(x)} - \frac{6x^{2}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln(arctan(x))}{(x^{2} + 1)^{2}arctan(x)} - \frac{6x^{2}{arctan(x)}^{x}(\frac{(1)}{(1 + (x)^{2})})}{(x^{2} + 1)^{2}(arctan(x))arctan(x)} - \frac{6x^{2}{arctan(x)}^{x}ln(arctan(x))(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}} + ({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln^{3}(arctan(x)) + \frac{{arctan(x)}^{x}*3ln^{2}(arctan(x))(\frac{(1)}{(1 + (x)^{2})})}{(arctan(x))} + \frac{3(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x{arctan(x)}^{x}ln^{2}(arctan(x))}{arctan(x)} + \frac{3{arctan(x)}^{x}ln^{2}(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{3x({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln^{2}(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{3x{arctan(x)}^{x}*2ln(arctan(x))(\frac{(1)}{(1 + (x)^{2})})}{(x^{2} + 1)(arctan(x))arctan(x)} + \frac{3x{arctan(x)}^{x}ln^{2}(arctan(x))(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)} + \frac{3(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x^{2}{arctan(x)}^{x}ln(arctan(x))}{arctan^{2}(x)} + \frac{3*2x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{3x^{2}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{3x^{2}{arctan(x)}^{x}(\frac{(1)}{(1 + (x)^{2})})}{(x^{2} + 1)^{2}(arctan(x))arctan^{2}(x)} + \frac{3x^{2}{arctan(x)}^{x}ln(arctan(x))(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}} + \frac{6(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x{arctan(x)}^{x}}{arctan^{2}(x)} + \frac{6{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{6x({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{6x{arctan(x)}^{x}(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}} - \frac{3(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x{arctan(x)}^{x}ln(arctan(x))}{arctan^{2}(x)} - \frac{3{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{3x({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{3x{arctan(x)}^{x}(\frac{(1)}{(1 + (x)^{2})})}{(x^{2} + 1)^{2}(arctan(x))arctan^{2}(x)} - \frac{3x{arctan(x)}^{x}ln(arctan(x))(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}} - \frac{8(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})x{arctan(x)}^{x}}{arctan(x)} - \frac{8{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan(x)} - \frac{8x({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{2}arctan(x)} - \frac{8x{arctan(x)}^{x}(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}} - \frac{3(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}}){arctan(x)}^{x}}{arctan^{2}(x)} - \frac{3({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{3{arctan(x)}^{x}(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{2}} + \frac{8(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{3}{arctan(x)}^{x}}{arctan(x)} + \frac{8*3x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan(x)} + \frac{8x^{3}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{3}arctan(x)} + \frac{8x^{3}{arctan(x)}^{x}(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{3}} - \frac{6(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{3}{arctan(x)}^{x}}{arctan^{2}(x)} - \frac{6*3x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{2}(x)} - \frac{6x^{3}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{3}arctan^{2}(x)} - \frac{6x^{3}{arctan(x)}^{x}(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{3}} + \frac{6(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2}{arctan(x)}^{x}}{arctan^{2}(x)} + \frac{6*2x{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{6x^{2}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{6x^{2}{arctan(x)}^{x}(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{3}} + \frac{(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{3}{arctan(x)}^{x}}{arctan^{3}(x)} + \frac{3x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} + \frac{x^{3}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{3}arctan^{3}(x)} + \frac{x^{3}{arctan(x)}^{x}(\frac{-3(1)}{arctan^{4}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{3}} - \frac{3(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2}{arctan(x)}^{x}}{arctan^{3}(x)} - \frac{3*2x{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} - \frac{3x^{2}({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{3}arctan^{3}(x)} - \frac{3x^{2}{arctan(x)}^{x}(\frac{-3(1)}{arctan^{4}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{3}} + \frac{2(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x{arctan(x)}^{x}}{arctan^{3}(x)} + \frac{2{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} + \frac{2x({arctan(x)}^{x}((1)ln(arctan(x)) + \frac{(x)((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))}{(x^{2} + 1)^{3}arctan^{3}(x)} + \frac{2x{arctan(x)}^{x}(\frac{-3(1)}{arctan^{4}(x)(1 + (x)^{2})})}{(x^{2} + 1)^{3}}\\=&\frac{-32x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan(x)} + \frac{12{arctan(x)}^{x}ln^{2}(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{24x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{12{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{12{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{32x^{3}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{3}arctan(x)} - \frac{12x^{2}{arctan(x)}^{x}ln^{2}(arctan(x))}{(x^{2} + 1)^{2}arctan(x)} - \frac{24x^{3}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{3}arctan^{2}(x)} - \frac{56x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{24x^{2}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{4x{arctan(x)}^{x}ln^{3}(arctan(x))}{(x^{2} + 1)arctan(x)} + \frac{6x^{2}{arctan(x)}^{x}ln^{2}(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} - \frac{6x{arctan(x)}^{x}ln^{2}(arctan(x))}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{4x^{3}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{3}arctan^{3}(x)} + \frac{12x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} - \frac{12x^{2}{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{3}arctan^{3}(x)} - \frac{24x{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} + {arctan(x)}^{x}ln^{4}(arctan(x)) + \frac{8x{arctan(x)}^{x}ln(arctan(x))}{(x^{2} + 1)^{3}arctan^{3}(x)} + \frac{56x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan(x)} - \frac{8{arctan(x)}^{x}}{(x^{2} + 1)^{2}arctan(x)} + \frac{32x{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{2}(x)} + \frac{8{arctan(x)}^{x}}{(x^{2} + 1)^{3}arctan^{3}(x)} - \frac{48x^{4}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan(x)} + \frac{44x^{4}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{2}(x)} - \frac{44x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{2}(x)} - \frac{12x^{4}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{3}(x)} + \frac{36x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{3}(x)} - \frac{24x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{3}(x)} + \frac{x^{4}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{4}(x)} - \frac{6x^{3}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{4}(x)} + \frac{11x^{2}{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{4}(x)} - \frac{6x{arctan(x)}^{x}}{(x^{2} + 1)^{4}arctan^{4}(x)}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。