本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2sqrt(x)ln(sqrt(x) + sqrt(x + 1)) - 2sqrt(1 + x) - \frac{xln(x)}{2} + \frac{x}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2ln(sqrt(x) + sqrt(x + 1))sqrt(x) - 2sqrt(x + 1) - \frac{1}{2}xln(x) + \frac{1}{2}x\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2ln(sqrt(x) + sqrt(x + 1))sqrt(x) - 2sqrt(x + 1) - \frac{1}{2}xln(x) + \frac{1}{2}x\right)}{dx}\\=&\frac{2(\frac{\frac{1}{2}}{(x)^{\frac{1}{2}}} + \frac{(1 + 0)*\frac{1}{2}}{(x + 1)^{\frac{1}{2}}})sqrt(x)}{(sqrt(x) + sqrt(x + 1))} + \frac{2ln(sqrt(x) + sqrt(x + 1))*\frac{1}{2}}{(x)^{\frac{1}{2}}} - \frac{2(1 + 0)*\frac{1}{2}}{(x + 1)^{\frac{1}{2}}} - \frac{1}{2}ln(x) - \frac{\frac{1}{2}x}{(x)} + \frac{1}{2}\\=&\frac{sqrt(x)}{(sqrt(x) + sqrt(x + 1))x^{\frac{1}{2}}} + \frac{sqrt(x)}{(sqrt(x) + sqrt(x + 1))(x + 1)^{\frac{1}{2}}} + \frac{ln(sqrt(x) + sqrt(x + 1))}{x^{\frac{1}{2}}} - \frac{1}{(x + 1)^{\frac{1}{2}}} - \frac{ln(x)}{2}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!