本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{arctan(x)}^{{sin(x)}^{ln(x)}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {arctan(x)}^{{sin(x)}^{ln(x)}}\right)}{dx}\\=&({arctan(x)}^{{sin(x)}^{ln(x)}}((({sin(x)}^{ln(x)}((\frac{1}{(x)})ln(sin(x)) + \frac{(ln(x))(cos(x))}{(sin(x))})))ln(arctan(x)) + \frac{({sin(x)}^{ln(x)})((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))\\=&\frac{{sin(x)}^{ln(x)}{arctan(x)}^{{sin(x)}^{ln(x)}}ln(arctan(x))ln(sin(x))}{x} + \frac{{sin(x)}^{ln(x)}{arctan(x)}^{{sin(x)}^{ln(x)}}ln(arctan(x))ln(x)cos(x)}{sin(x)} + \frac{{sin(x)}^{ln(x)}{arctan(x)}^{{sin(x)}^{ln(x)}}}{(x^{2} + 1)arctan(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!