本次共计算 1 个题目:每一题对 x 求 15 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(lg(x)) 关于 x 的 15 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ \\ &\color{blue}{函数的 15 阶导数:} \\=&\frac{87178291200}{x^{15}ln{10}lg(x)} + \frac{283465647360}{x^{15}ln^{2}{10}lg^{2}(x)} + \frac{784313595648}{x^{15}ln^{3}{10}lg^{3}(x)} + \frac{1865935562400}{x^{15}ln^{4}{10}lg^{4}(x)} + \frac{3833318536320}{x^{15}ln^{5}{10}lg^{5}(x)} + \frac{6799604011200}{x^{15}ln^{6}{10}lg^{6}(x)} + \frac{10374712508160}{x^{15}ln^{7}{10}lg^{7}(x)} + \frac{13514527026000}{x^{15}ln^{8}{10}lg^{8}(x)} + \frac{14854356316800}{x^{15}ln^{9}{10}lg^{9}(x)} + \frac{13539878352000}{x^{15}ln^{10}{10}lg^{10}(x)} + \frac{9978281913600}{x^{15}ln^{11}{10}lg^{11}(x)} + \frac{5721075360000}{x^{15}ln^{12}{10}lg^{12}(x)} + \frac{2397403008000}{x^{15}ln^{13}{10}lg^{13}(x)} + \frac{653837184000}{x^{15}ln^{14}{10}lg^{14}(x)} + \frac{87178291200}{x^{15}ln^{15}{10}lg^{15}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!