本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{({x}^{2} - 2x)}{(({x}^{2} + 1)(1 - {x}^{2}))})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(\frac{(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x^{2}}{(-x^{2} + 1)} + \frac{(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})x^{2}}{(x^{2} + 1)} + \frac{2x}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x}{(-x^{2} + 1)} - \frac{2(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})x}{(x^{2} + 1)} - \frac{2}{(x^{2} + 1)(-x^{2} + 1)})}{(\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}})\\=&\frac{-x^{3}}{(\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}(x^{2} + 1)^{2}(-x^{2} + 1)} + \frac{x^{3}}{(\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}(x^{2} + 1)(-x^{2} + 1)^{2}} + \frac{x}{(\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}(-x^{2} + 1)(x^{2} + 1)} + \frac{2x^{2}}{(\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}(x^{2} + 1)^{2}(-x^{2} + 1)} - \frac{2x^{2}}{(\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}(x^{2} + 1)(-x^{2} + 1)^{2}} - \frac{1}{(\frac{x^{2}}{(x^{2} + 1)(-x^{2} + 1)} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)})^{\frac{1}{2}}(x^{2} + 1)(-x^{2} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!