本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x - \frac{({x}^{3} - x - 1)}{(3{x}^{2} - 1)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x - \frac{x^{3}}{(3x^{2} - 1)} + \frac{x}{(3x^{2} - 1)} + \frac{1}{(3x^{2} - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x - \frac{x^{3}}{(3x^{2} - 1)} + \frac{x}{(3x^{2} - 1)} + \frac{1}{(3x^{2} - 1)}\right)}{dx}\\=&1 - (\frac{-(3*2x + 0)}{(3x^{2} - 1)^{2}})x^{3} - \frac{3x^{2}}{(3x^{2} - 1)} + (\frac{-(3*2x + 0)}{(3x^{2} - 1)^{2}})x + \frac{1}{(3x^{2} - 1)} + (\frac{-(3*2x + 0)}{(3x^{2} - 1)^{2}})\\=&\frac{6x^{4}}{(3x^{2} - 1)^{2}} - \frac{3x^{2}}{(3x^{2} - 1)} - \frac{6x^{2}}{(3x^{2} - 1)^{2}} - \frac{6x}{(3x^{2} - 1)^{2}} + \frac{1}{(3x^{2} - 1)} + 1\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{6x^{4}}{(3x^{2} - 1)^{2}} - \frac{3x^{2}}{(3x^{2} - 1)} - \frac{6x^{2}}{(3x^{2} - 1)^{2}} - \frac{6x}{(3x^{2} - 1)^{2}} + \frac{1}{(3x^{2} - 1)} + 1\right)}{dx}\\=&6(\frac{-2(3*2x + 0)}{(3x^{2} - 1)^{3}})x^{4} + \frac{6*4x^{3}}{(3x^{2} - 1)^{2}} - 3(\frac{-(3*2x + 0)}{(3x^{2} - 1)^{2}})x^{2} - \frac{3*2x}{(3x^{2} - 1)} - 6(\frac{-2(3*2x + 0)}{(3x^{2} - 1)^{3}})x^{2} - \frac{6*2x}{(3x^{2} - 1)^{2}} - 6(\frac{-2(3*2x + 0)}{(3x^{2} - 1)^{3}})x - \frac{6}{(3x^{2} - 1)^{2}} + (\frac{-(3*2x + 0)}{(3x^{2} - 1)^{2}}) + 0\\=& - \frac{72x^{5}}{(3x^{2} - 1)^{3}} + \frac{42x^{3}}{(3x^{2} - 1)^{2}} - \frac{6x}{(3x^{2} - 1)} + \frac{72x^{3}}{(3x^{2} - 1)^{3}} - \frac{18x}{(3x^{2} - 1)^{2}} + \frac{72x^{2}}{(3x^{2} - 1)^{3}} - \frac{6}{(3x^{2} - 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!