本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(x + {(x + {2}^{x})}^{\frac{1}{2}})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (x + (x + {2}^{x})^{\frac{1}{2}})^{\frac{1}{2}}\right)}{dx}\\=&((x + (x + {2}^{x})^{\frac{1}{2}})^{\frac{1}{2}}((0)ln(x + (x + {2}^{x})^{\frac{1}{2}}) + \frac{(\frac{1}{2})(1 + ((x + {2}^{x})^{\frac{1}{2}}((0)ln(x + {2}^{x}) + \frac{(\frac{1}{2})(1 + ({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})))}{(x + {2}^{x})})))}{(x + (x + {2}^{x})^{\frac{1}{2}})}))\\=&\frac{(x + {2}^{x})^{\frac{1}{2}}(x + (x + {2}^{x})^{\frac{1}{2}})^{\frac{1}{2}}{2}^{x}ln(2)}{4(x + {2}^{x})(x + (x + {2}^{x})^{\frac{1}{2}})} + \frac{(x + (x + {2}^{x})^{\frac{1}{2}})^{\frac{1}{2}}(x + {2}^{x})^{\frac{1}{2}}}{4(x + {2}^{x})(x + (x + {2}^{x})^{\frac{1}{2}})} + \frac{(x + (x + {2}^{x})^{\frac{1}{2}})^{\frac{1}{2}}}{2(x + (x + {2}^{x})^{\frac{1}{2}})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!