本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数a(1 - cos(\frac{px}{(2L)})) + b{(1 - cos(\frac{px}{(2L)}))}^{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - acos(\frac{\frac{1}{2}px}{L}) + a + bcos^{2}(\frac{\frac{1}{2}px}{L}) - 2bcos(\frac{\frac{1}{2}px}{L}) + b\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - acos(\frac{\frac{1}{2}px}{L}) + a + bcos^{2}(\frac{\frac{1}{2}px}{L}) - 2bcos(\frac{\frac{1}{2}px}{L}) + b\right)}{dx}\\=& - \frac{a*-sin(\frac{\frac{1}{2}px}{L})*\frac{1}{2}p}{L} + 0 + \frac{b*-2cos(\frac{\frac{1}{2}px}{L})sin(\frac{\frac{1}{2}px}{L})*\frac{1}{2}p}{L} - \frac{2b*-sin(\frac{\frac{1}{2}px}{L})*\frac{1}{2}p}{L} + 0\\=&\frac{apsin(\frac{\frac{1}{2}px}{L})}{2L} - \frac{pbsin(\frac{\frac{1}{2}px}{L})cos(\frac{\frac{1}{2}px}{L})}{L} + \frac{pbsin(\frac{\frac{1}{2}px}{L})}{L}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!