本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数60{\frac{1}{({(60 - 7{x}^{2})}^{2} + {(22x - {x}^{3})}^{2})}}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{60}{(5x^{4} - 356x^{2} + x^{6} + 3600)^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{60}{(5x^{4} - 356x^{2} + x^{6} + 3600)^{\frac{1}{2}}}\right)}{dx}\\=&60(\frac{\frac{-1}{2}(5*4x^{3} - 356*2x + 6x^{5} + 0)}{(5x^{4} - 356x^{2} + x^{6} + 3600)^{\frac{3}{2}}})\\=&\frac{-600x^{3}}{(5x^{4} - 356x^{2} + x^{6} + 3600)^{\frac{3}{2}}} + \frac{21360x}{(5x^{4} - 356x^{2} + x^{6} + 3600)^{\frac{3}{2}}} - \frac{180x^{5}}{(5x^{4} - 356x^{2} + x^{6} + 3600)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!