本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({x}^{2} - 4Rx + 6{R}^{2})}{(3{x}^{2} - 12Rx + 12{R}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(3x^{2} - 12Rx + 12R^{2})} - \frac{4Rx}{(3x^{2} - 12Rx + 12R^{2})} + \frac{6R^{2}}{(3x^{2} - 12Rx + 12R^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(3x^{2} - 12Rx + 12R^{2})} - \frac{4Rx}{(3x^{2} - 12Rx + 12R^{2})} + \frac{6R^{2}}{(3x^{2} - 12Rx + 12R^{2})}\right)}{dx}\\=&(\frac{-(3*2x - 12R + 0)}{(3x^{2} - 12Rx + 12R^{2})^{2}})x^{2} + \frac{2x}{(3x^{2} - 12Rx + 12R^{2})} - 4(\frac{-(3*2x - 12R + 0)}{(3x^{2} - 12Rx + 12R^{2})^{2}})Rx - \frac{4R}{(3x^{2} - 12Rx + 12R^{2})} + 6(\frac{-(3*2x - 12R + 0)}{(3x^{2} - 12Rx + 12R^{2})^{2}})R^{2} + 0\\=&\frac{-6x^{3}}{(3x^{2} - 12Rx + 12R^{2})^{2}} + \frac{36Rx^{2}}{(3x^{2} - 12Rx + 12R^{2})^{2}} + \frac{2x}{(3x^{2} - 12Rx + 12R^{2})} - \frac{84R^{2}x}{(3x^{2} - 12Rx + 12R^{2})^{2}} - \frac{4R}{(3x^{2} - 12Rx + 12R^{2})} + \frac{72R^{3}}{(3x^{2} - 12Rx + 12R^{2})^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!