本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数114514{ln(x)}^{114514} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 114514ln^{114514}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 114514ln^{114514}(x)\right)}{dx}\\=&\frac{114514*114514ln^{114513}(x)}{(x)}\\=&\frac{13113456196ln^{114513}(x)}{x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{13113456196ln^{114513}(x)}{x}\right)}{dx}\\=&\frac{13113456196*-ln^{114513}(x)}{x^{2}} + \frac{13113456196*114513ln^{114512}(x)}{x(x)}\\=&\frac{-13113456196ln^{114513}(x)}{x^{2}} + \frac{1501661209372548ln^{114512}(x)}{x^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-13113456196ln^{114513}(x)}{x^{2}} + \frac{1501661209372548ln^{114512}(x)}{x^{2}}\right)}{dx}\\=&\frac{-13113456196*-2ln^{114513}(x)}{x^{3}} - \frac{13113456196*114513ln^{114512}(x)}{x^{2}(x)} + \frac{1501661209372548*-2ln^{114512}(x)}{x^{3}} + \frac{1501661209372548*114512ln^{114511}(x)}{x^{2}(x)}\\=&\frac{26226912392ln^{114513}(x)}{x^{3}} - \frac{4504983628117644ln^{114512}(x)}{x^{3}} + \frac{5937531744283252032ln^{114511}(x)}{x^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{26226912392ln^{114513}(x)}{x^{3}} - \frac{4504983628117644ln^{114512}(x)}{x^{3}} + \frac{5937531744283252032ln^{114511}(x)}{x^{3}}\right)}{dx}\\=&\frac{26226912392*-3ln^{114513}(x)}{x^{4}} + \frac{26226912392*114513ln^{114512}(x)}{x^{3}(x)} - \frac{4504983628117644*-3ln^{114512}(x)}{x^{4}} - \frac{4504983628117644*114512ln^{114511}(x)}{x^{3}(x)} + \frac{5937531744283252032*-3ln^{114511}(x)}{x^{4}} + \frac{5937531744283252032*114511ln^{114510}(x)}{x^{3}(x)}\\=&\frac{-78680737176ln^{114513}(x)}{x^{4}} + \frac{16518273303098028ln^{114512}(x)}{x^{4}} + \frac{1268297681719591040ln^{114511}(x)}{x^{4}} + \frac{2604500832819973824ln^{114510}(x)}{x^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!