本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{x}{sin(\frac{πx}{180})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{sin(\frac{1}{180}πx)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{sin(\frac{1}{180}πx)}\right)}{dx}\\=&\frac{1}{sin(\frac{1}{180}πx)} + \frac{x*-cos(\frac{1}{180}πx)*\frac{1}{180}π}{sin^{2}(\frac{1}{180}πx)}\\=&\frac{1}{sin(\frac{1}{180}πx)} - \frac{πxcos(\frac{1}{180}πx)}{180sin^{2}(\frac{1}{180}πx)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{sin(\frac{1}{180}πx)} - \frac{πxcos(\frac{1}{180}πx)}{180sin^{2}(\frac{1}{180}πx)}\right)}{dx}\\=&\frac{-cos(\frac{1}{180}πx)*\frac{1}{180}π}{sin^{2}(\frac{1}{180}πx)} - \frac{πcos(\frac{1}{180}πx)}{180sin^{2}(\frac{1}{180}πx)} - \frac{πx*-2cos(\frac{1}{180}πx)*\frac{1}{180}πcos(\frac{1}{180}πx)}{180sin^{3}(\frac{1}{180}πx)} - \frac{πx*-sin(\frac{1}{180}πx)*\frac{1}{180}π}{180sin^{2}(\frac{1}{180}πx)}\\=&\frac{-πcos(\frac{1}{180}πx)}{90sin^{2}(\frac{1}{180}πx)} + \frac{π^{2}xcos^{2}(\frac{1}{180}πx)}{16200sin^{3}(\frac{1}{180}πx)} + \frac{π^{2}x}{32400sin(\frac{1}{180}πx)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!