本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{2(x)}{h})sin(\frac{(n + \frac{1}{2})piy(x)}{h}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(\frac{npiyx}{h} + \frac{\frac{1}{2}piyx}{h})sqrt(\frac{2x}{h})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(\frac{npiyx}{h} + \frac{\frac{1}{2}piyx}{h})sqrt(\frac{2x}{h})\right)}{dx}\\=&cos(\frac{npiyx}{h} + \frac{\frac{1}{2}piyx}{h})(\frac{npiy}{h} + \frac{\frac{1}{2}piy}{h})sqrt(\frac{2x}{h}) + \frac{sin(\frac{npiyx}{h} + \frac{\frac{1}{2}piyx}{h})*2*\frac{1}{2}}{h(\frac{2x}{h})^{\frac{1}{2}}}\\=&\frac{npiycos(\frac{npiyx}{h} + \frac{\frac{1}{2}piyx}{h})sqrt(\frac{2x}{h})}{h} + \frac{piycos(\frac{npiyx}{h} + \frac{\frac{1}{2}piyx}{h})sqrt(\frac{2x}{h})}{2h} + \frac{sin(\frac{npiyx}{h} + \frac{\frac{1}{2}piyx}{h})}{2^{\frac{1}{2}}h^{\frac{1}{2}}x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!